3.372 \(\int \frac {(a+a \sec (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx\)

Optimal. Leaf size=117 \[ \frac {4 a^3 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {36 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a^3 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a^3 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {36 a^3 \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \]

[Out]

-36/5*a^3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4*a^3*(cos(1
/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5*a^3*sin(d*x+c)/d/cos(d*x
+c)^(5/2)+2*a^3*sin(d*x+c)/d/cos(d*x+c)^(3/2)+36/5*a^3*sin(d*x+c)/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 117, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {4264, 3791, 3771, 2641, 3768, 2639} \[ \frac {4 a^3 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {36 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a^3 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a^3 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {36 a^3 \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^3/Sqrt[Cos[c + d*x]],x]

[Out]

(-36*a^3*EllipticE[(c + d*x)/2, 2])/(5*d) + (4*a^3*EllipticF[(c + d*x)/2, 2])/d + (2*a^3*Sin[c + d*x])/(5*d*Co
s[c + d*x]^(5/2)) + (2*a^3*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2)) + (36*a^3*Sin[c + d*x])/(5*d*Sqrt[Cos[c + d*x]
])

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3791

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Int[Expand
Trig[(a + b*csc[e + f*x])^m*(d*csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0]
 && IGtQ[m, 0] && RationalQ[n]

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {(a+a \sec (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^3 \, dx\\ &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \left (a^3 \sqrt {\sec (c+d x)}+3 a^3 \sec ^{\frac {3}{2}}(c+d x)+3 a^3 \sec ^{\frac {5}{2}}(c+d x)+a^3 \sec ^{\frac {7}{2}}(c+d x)\right ) \, dx\\ &=\left (a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx+\left (a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sec ^{\frac {7}{2}}(c+d x) \, dx+\left (3 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sec ^{\frac {3}{2}}(c+d x) \, dx+\left (3 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sec ^{\frac {5}{2}}(c+d x) \, dx\\ &=\frac {2 a^3 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a^3 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)}+\frac {6 a^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+a^3 \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\frac {1}{5} \left (3 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sec ^{\frac {3}{2}}(c+d x) \, dx+\left (a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx-\left (3 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {2 a^3 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^3 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a^3 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)}+\frac {36 a^3 \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}+a^3 \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx-\left (3 a^3\right ) \int \sqrt {\cos (c+d x)} \, dx-\frac {1}{5} \left (3 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx\\ &=-\frac {6 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {4 a^3 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^3 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a^3 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)}+\frac {36 a^3 \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}-\frac {1}{5} \left (3 a^3\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=-\frac {36 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^3 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^3 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a^3 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)}+\frac {36 a^3 \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.21, size = 501, normalized size = 4.28 \[ \frac {9 \csc (c) \cos ^3(c+d x) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) (a \sec (c+d x)+a)^3 \left (\frac {\tan (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right ) \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2\left (d x+\tan ^{-1}(\tan (c))\right )\right )}{\sqrt {\tan ^2(c)+1} \sqrt {1-\cos \left (\tan ^{-1}(\tan (c))+d x\right )} \sqrt {\cos \left (\tan ^{-1}(\tan (c))+d x\right )+1} \sqrt {\cos (c) \sqrt {\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}}-\frac {\frac {\tan (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right )}{\sqrt {\tan ^2(c)+1}}+\frac {2 \cos ^2(c) \sqrt {\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}{\sin ^2(c)+\cos ^2(c)}}{\sqrt {\cos (c) \sqrt {\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}}\right )}{20 d}-\frac {\csc (c) \cos ^3(c+d x) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) (a \sec (c+d x)+a)^3 \sqrt {1-\sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt {\sin (c) \left (-\sqrt {\cot ^2(c)+1}\right ) \sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt {\sin \left (d x-\tan ^{-1}(\cot (c))\right )+1} \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )}{2 d \sqrt {\cot ^2(c)+1}}+\cos ^{\frac {7}{2}}(c+d x) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) (a \sec (c+d x)+a)^3 \left (\frac {\sec (c) \sin (d x) \sec ^3(c+d x)}{20 d}+\frac {\sec (c) (\sin (c)+5 \sin (d x)) \sec ^2(c+d x)}{20 d}+\frac {\sec (c) (5 \sin (c)+18 \sin (d x)) \sec (c+d x)}{20 d}+\frac {9 \csc (c) \sec (c)}{10 d}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + a*Sec[c + d*x])^3/Sqrt[Cos[c + d*x]],x]

[Out]

Cos[c + d*x]^(7/2)*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*((9*Csc[c]*Sec[c])/(10*d) + (Sec[c]*Sec[c + d*x
]^3*Sin[d*x])/(20*d) + (Sec[c]*Sec[c + d*x]^2*(Sin[c] + 5*Sin[d*x]))/(20*d) + (Sec[c]*Sec[c + d*x]*(5*Sin[c] +
 18*Sin[d*x]))/(20*d)) - (Cos[c + d*x]^3*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]
^2]*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*
Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(2*d*Sqrt[1
+ Cot[c]^2]) + (9*Cos[c + d*x]^3*Csc[c]*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*((HypergeometricPFQ[{-1/2,
 -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c
]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Ta
n[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt
[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(20*d)

________________________________________________________________________________________

fricas [F]  time = 0.49, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {a^{3} \sec \left (d x + c\right )^{3} + 3 \, a^{3} \sec \left (d x + c\right )^{2} + 3 \, a^{3} \sec \left (d x + c\right ) + a^{3}}{\sqrt {\cos \left (d x + c\right )}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^3/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((a^3*sec(d*x + c)^3 + 3*a^3*sec(d*x + c)^2 + 3*a^3*sec(d*x + c) + a^3)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{3}}{\sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^3/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^3/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

maple [B]  time = 5.70, size = 386, normalized size = 3.30 \[ -\frac {16 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{3} \left (\frac {7 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{10 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{160 \left (-\frac {1}{2}+\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}-\frac {9 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )}{10 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}-\frac {9 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (\EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{20 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{16 \left (-\frac {1}{2}+\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^3/cos(d*x+c)^(1/2),x)

[Out]

-16*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^3*(7/10*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1
/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(
1/2))-1/160*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(-1/2+cos(1/2*d*x+1/2*c)^2
)^3-9/10*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)/(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)-9/2
0*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2
)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-1/16*cos(1/2*d*x+1/2*c)*
(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(-1/2+cos(1/2*d*x+1/2*c)^2)^2)/sin(1/2*d*x+1/2*c)/(2*cos(
1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{3}}{\sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^3/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^3/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

mupad [B]  time = 1.58, size = 154, normalized size = 1.32 \[ \frac {2\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {6\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(c + d*x))^3/cos(c + d*x)^(1/2),x)

[Out]

(2*a^3*ellipticF(c/2 + (d*x)/2, 2))/d + (6*a^3*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*co
s(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (2*a^3*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(d
*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2)) + (2*a^3*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2)
)/(5*d*cos(c + d*x)^(5/2)*(sin(c + d*x)^2)^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ a^{3} \left (\int \frac {3 \sec {\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {3 \sec ^{2}{\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {\sec ^{3}{\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {1}{\sqrt {\cos {\left (c + d x \right )}}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**3/cos(d*x+c)**(1/2),x)

[Out]

a**3*(Integral(3*sec(c + d*x)/sqrt(cos(c + d*x)), x) + Integral(3*sec(c + d*x)**2/sqrt(cos(c + d*x)), x) + Int
egral(sec(c + d*x)**3/sqrt(cos(c + d*x)), x) + Integral(1/sqrt(cos(c + d*x)), x))

________________________________________________________________________________________